

Relationships and Biodiversity NYSED Lab Review

Michael Comet South Lewis High School Turin, NY

Please note:

 "Curol" is a fictitious plant extract mentioned in the NYSED lab that has the ability to effectively treat cancer. IT DOES NOT EXIST. Likewise, any "Curol" images included in this presentation are simply images taken from an internet search and are not a cancer cure. It is simply a product found with a similar name. I do not know what it is used for as the website was not translated into the English language.

What does this lab entail?

- Seven tests that look at the physical, chemical, and microscopic characteristics of three plants that may be able to create Curol, even though they are not *Botana curus* (the plants that does produce it).
- Comparison of data to determine relationships.
- Define the crucial need for biodiversity.

Test 1 - Structural Characteristics of Plants

Botana curus

Species X

QUESTION:

Which leaves most closely resemble the leaves produced by *Botana curus*?

Record your observations in the data table.

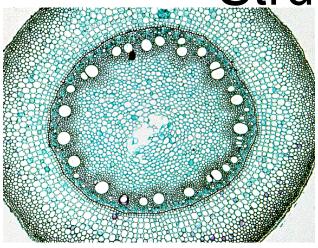
Test 2 – Structural Characteristics of Seeds

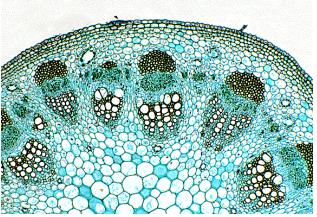
Botana curus seeds

QUESTION:

Which seeds most closely resemble the seeds produced by *Botana curus*?

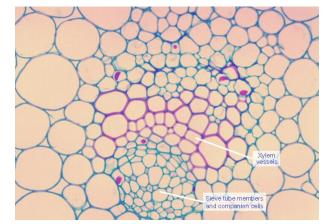
Record your observations in the data table.

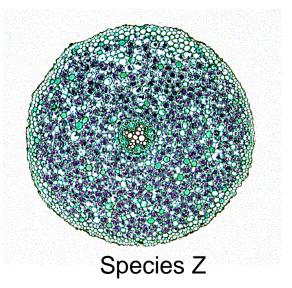

Species X seeds


Species Y seeds

Species Z seeds

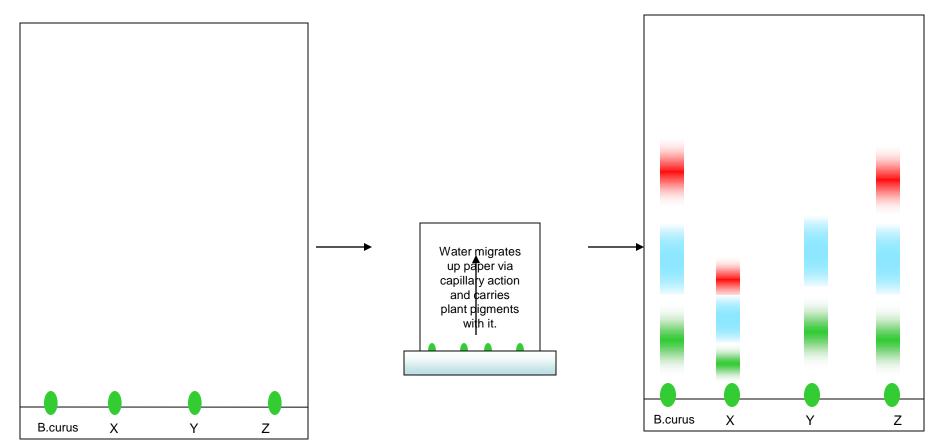
Test 3 – Microscopic Internal Structures of Stems


Botana curus

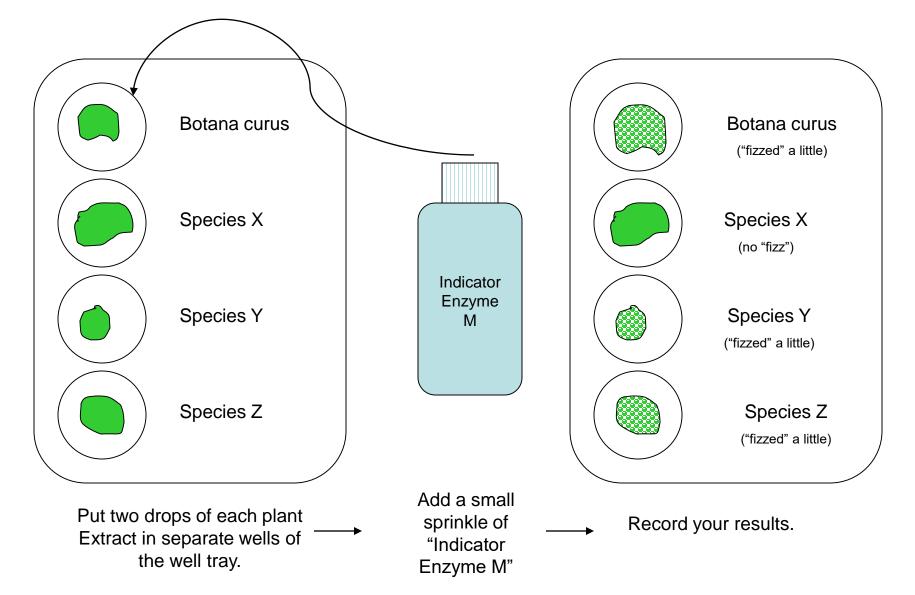

QUESTION:

Which stem structures most closely resemble the stem structures of Botana curus?

Record your observations in the data table.



Species X

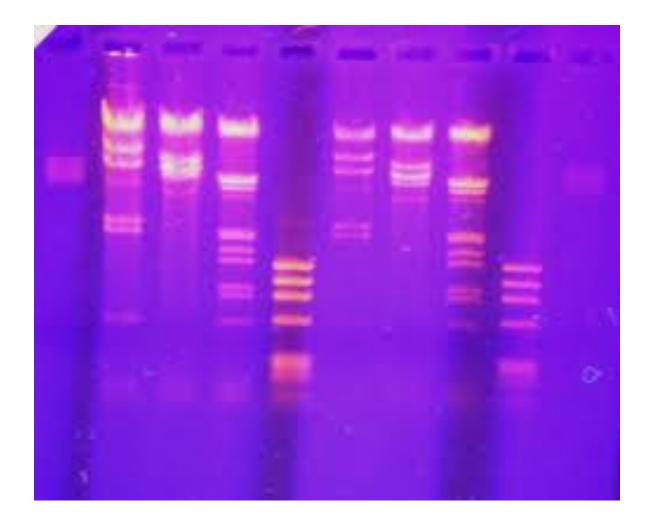

Species Y

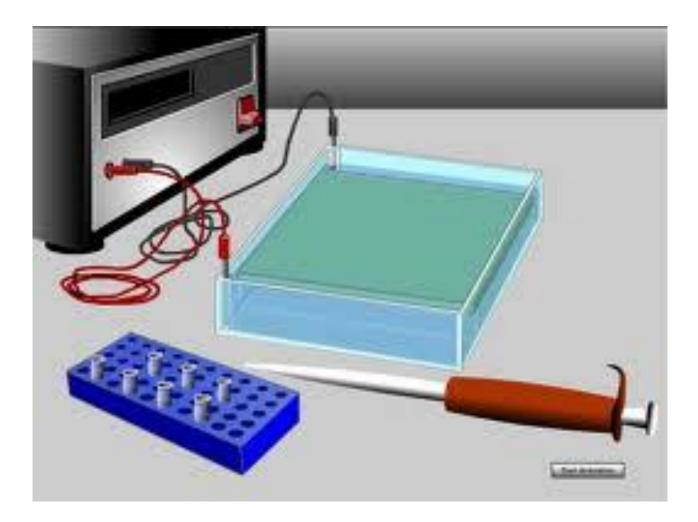
Test 4 – Paper Chromatography to Separate Plant Pigments


"Spot" your chromatography paper and label it with a pencil.

Test 5 – Indicator Tests for Enzyme M

Test 6 – Using Simulated Gel Electrophoresis to Compare DNA


The strips below represent the DNA strands extracted from each plant (*B. curus*, X, Y, and Z). Each strand will be "cut" between a double C/double G. Therefore, lines are drawn below where each strip should be cut. Then, count up the number of bases and paste appropriately in the simulated Gel Electrophoresis table on the next slide.


Simulated Gel Electrophoresis

# of Bases	Botana curus	Species X	Species Y	Species Z	
24					
23					
22		GGACGTCGCGACTAATATAGCA			
21					
20					
19					
18					
17			GGTACTCCTGTAATATC		
16					
15					
14					
13					
12	GGATCGATCGCC		GGGATCGCACCC	GGATCGATCGCC	
11	GGATATACTCC			GGATATACTCC	
10					
9	GGTAATATC			GGTAATATC	
8		ATTGTACC			
7		GGGATCC			
6					
5	ATTCC		GGTCC	ATTCC	
4					
3			ACC		
2					
1					

Actual Gel Bands

Starting Electrophoresis

Electrophoresis Notes 1. Separates chem by size and charge 2. DNA – so moves to + end of gel 3. Use enzymes to cut DNA 4. Put DNA in agar, in buffer, turn on electricity 5. Small DNA bands move the furthest 6. The more similar the banding pattern, the more related

Test 7 – Molecular Evidence for Relationships

Botana curus	CAC	GTG	GAC	TGA	GGA	СТС	СТС
mRNA	GUG	CAC	CUG	ACU	CCU	GAG	GAG
Amino acid	Val	His	Leu	Thr	Pro	Glu	Glu
Species X	CAC	GTG	GAC	AGA	GGA	CAC	СТС
mRNA	GUG	CAC	CUG	UCU	CCU	GUG	GAG
Amino acid	Val	His	Leu	Ser	Pro	Val	Glu
0		070			0.01		070
Species Y	CAC	GTG	GAC	AGA	GGA	CAC	СТС
mRNA	GUG	CAC	CUG	UCU	CCU	GUG	GAG
Amino acid	Val	His	Leu	Ser	Pro	Val	Glu
Species Z	CAC	GTA	GAC	TGA	GGA	СТТ	СТС
mRNA	GUG	CAC	CUG	ACU	CCU	GAA	GAG
Amino acid	Val	His	Leu	Thr	Pro	Glu	Glu

And where did you get those Amino Acids from???

			Seco	nd letter	24	
		U	С	Α	G	
First letter	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	UCAG
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG	
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGA AGG	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G

Your friend and mine... The Universal Genetic Code Chart

So, what is the closest and most probable alternative source for Curol???

<u>Test</u>	Most similar to Botana curus?
Test 1 – Structural Characteristics of Plants	Species Z as it has the same kind of parallel veination in the leaves.
Test 2 - Structural Characteristics of Seeds	Species Z seeds are flat and striped, much the same as <i>Botana curus</i> seeds are.
Test 3 – Microscopic Internal Structure of Stems	Species Z vascular bundles closely resemble those of <i>Botana curus.</i>
Test 4 – Paper Chromatography of Pigments	Species Z and <i>Botana curus</i> share a similar pattern of pigmentation in paper chromatography.
Test 5 – Indicator Tests for Enzyme M	While many "fizzed", once again Species Z and <i>Botana curus</i> reacted the same.
Test 6 – Simulated Gel Electrophoresis	Identical banding pattern in both <i>Botana curus</i> and Species Z.
Test 7 – Amino Acid Comparison	Species Z and <i>Botana curus</i> have the most similarities.

And the winner is.....

(insert drum roll here...)

Species Z